АНАЛИЗ УСЛОВИЙ ФОРМИРОВАНИЯ ПЛАЗМЫ В СТРУЕ ЭЛЕКТРОЛИТА ПРИ ОБРАБОТКЕ ПОВЕРХНОСТИ АНОДА В ДИАПАЗОНЕ 20-500 В
Аннотация и ключевые слова
Аннотация (русский):
В данной статье рассмотрено влияние напряжения электролитно-плазменного разряда в диапазоне напряжений от 20-500 В на формирование плазмы в свободнопадающей струе и струе под давлением, направленной на поверхность металлического анода. Показано, что при струйной обработке в диапазоне напряжений разряда 20-500 В на формирование области плазмы влияет много факторов. Показано, что при струйной обработке вольтамперная характеристика по форме существенно отличается от характеристики в электролитической ванне. Выявлено, что основными параметрами, влияющими на формирование плазмы в струе, является напряжение разряда и температура. В свою очередь, температура процесса во многом зависит от объемного расхода электролита, поступающего в межэлектродный промежуток. При достижении температуры электролита в межэлектродном промежутке 34-40 º С формируется процесс перехода от электрохимического воздействия на поверхность на комбинированный с сильным влиянием электролитной плазмы. Показано, что изменение процессов в электролит-ной струе под воздействием напряжения приводит к изменению морфологии поверхности и уменьшению параметра шероховатости Ra. Во всем диапазоне напряжения с его ростом показано увеличение мощности разряда, убыли материала анода, и рост температуры. Результаты данных исследований могут быть применимы для размерной и финишной обработки поверхности нержавеющих сталей и сплавов.

Ключевые слова:
ЭЛЕКТРОЛИТ, ПЛАЗМА, СТРУЯ, АНОД, ТЕМПЕРАТУРА, ДИАГНОСТИКА, МОРФОЛОГИЯ, ГИДРОДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ, ШЕРОХОВАТОСТЬ
Текст
Текст (PDF): Читать Скачать

1 Состояние вопроса исследования и актуальность работы

 

Наличие технологического суверенитета России во многом зависит от развития промышленности, использующей прорывные инновационные решения. Внедрение их позволяет уменьшить технологическую зависимость России от западных технологий [1-4]. Одной из таких инновационных технологий является перспективная технология струйной электролитно-плазменной обработки (ЭПО) [5-12]. Анализ данной технологии показывает, что при достаточно большом количестве работ в этой области имеются большие белые пятна для разных режимов обработки поверхности. Нет понимания в какой период и при каких условиях при больших объемных расходах электролита (ОРЭ) заканчивается процесс электролиза и начинает «работать» электролитно-плазменный механизм. Изучение работ, посвященных электролитно-плазменной обработке в электролитической ванне, показывает, что электролитно-плазменный режим начинается при напряжении разряда более 200 В [‎13]. В наших работах было показано возникновение электролитно-плазменного разряда (ЭПР) в ванне при напряжении 120 В [‎14]. Другие источники показывают, что начало этого процесса может быть при 80 В, при 30 В, а в отдельных случаях при 20 В [‎15, 16]. Однако, в какой момент возникает плазменный разряд в струе электролита определить визуально не всегда представляется возможным. Это прежде всего связано с большой скоростью потока и большими ОРЭ и, следовательно, достаточно низкой температурой электролита. Для разряда в форме капли или диффузного разряда в виде эллипсоида зафиксировать момент формирования разряда можно визуально [‎17]. В струе при низких ОРЭ наблюдается характерное кипение, образование пароплазменной и анодной оболочки, свечение в прианодной зоне. Однако при увеличении скорости потока электролита выделяемого тепла недостаточно для образования пароплазменной оболочки и энергии разряда недостаточно, чтобы ионизировать прианодную зону. Это затрудняет понимание того, в какой момент заканчиваются или начинаются ионизационные процессы в струе электролита при больших ОРЭ. Происходит ли ионизация составляющих электролита при высокой скорости потока? Насколько сильны ионизационные процессы в струе электролита? И главный вопрос − каким образом это можно выявить? Цель работы определить начало ионизационных процессов в струе электролита при ОРЭ (8-90 л/ч) в диапазоне рабочих напряжений 20-500 В и разной форме токоподводов. Задачи работы: снять вольтамперную характеристику, зафиксировать изменение температуры, зафиксировать изменение морфологии и шероховатости поверхности, оценить изменение убыли материала анода.

 

2 Материалы и методы

 

Для исследований использовалась установка струйной электролитно-плазменной обработки, разработанная в ВШМ, ИММ и Т, СПбПУ [18-21].

В качестве обрабатываемого материала были выбраны образцы из меди М1, нержавеющих сталей AISI 301, AISI 304, 08Х18Н9Т c размерами 45×45×1 мм с исходной шероховатостью поверхности Ra 0.2 мкм. В качестве электролита использовали NH4NO3 или Na2SO4 с концентрацией 30 г/л. ОРЭ составил Q = 2-88 л/ч. Объемный расход рассчитывали за время наполнения 1 литра мерным химическим стаканом по ГОСТ 23932–90.

ОРЭ рассчитывали по формуле (1), л/ч:

 

Q = 3600 · V / τ,                                                     (1)

 

где V– объем, равный 1, л; τ – время наполнения электролитом объема в 1 л, с.

Межэлектродный зазор для разных условий составил 2-8 мм. Электрод-инструмент перемещали над поверхностью образца с подачей 180 мм/мин. Диапазон изменения напряжений составил 20-500 В. Ток разряда измеряли токовыми клещами UNI-T UT210B, напряжение разряда измеряли щитовым цифровым вольтметром OMIX V-3-1.0. В процессе исследований убыль веса образцов фиксировалась на лабораторных весах ВМ213М с ценой деления 0,001 мг. Измерения параметра шероховатости Ra проводились с использованием профилометра TR200 по семь раз для каждого образца.

Морфологию поверхности изучали на оптическом микроскопе МЕТАМ ЛВ-31. Гидродинамическое моделирование проводили в программе «Comsol Multiphysics».

 

3 Результаты исследований

 

3.1 Анализ формирования плазмы в струе электролита при малых ОРЭ 2-8 л/ч

Анализ формирования плазмы в струе электролита при малых ОРЭ 2-8 л/ч показывает, что ЭПР формируется при малых напряжениях от 220 В и характеризуется визуально видимым свечением как при дневном свете, так и в условиях затемнения.  Замечено, что разряд при малых ОРЭ (2-8 л/ч) не является непрерывным процессом. Ионизация разряда происходит периодически (рис.1.а), на что показывает цвет разряда, амплитуда и частота звука, характеризующая возникновение единичных разрядов на поверхности анода [22, 23].

 

а)                                                                              б)

 

а – циклическая работа разряда эллипсоидной формы;
б – деструкция разряда с потерей формы и изменением звукового поля

Рисунок 1 – Анализ амплитуды и частоты звука при формировании ЭПР
при малых ОРЭ (Q = 2-8 л/ч)

 

3.2 Анализ развития ЭПР в струе электролита при малых ОРЭ 2-8 л/ч

Оценку развития ЭПР в струе электролита производили для разных материалов, разных диапазонов напряжений и разных электролитов, и различных ОРЭ и разной формы токоподвода. Не смотря на различные области исследований нами были зафиксированы общие закономерности при проведении данных опытов. Ионизация капли, падающей с полого катода, начинается еще до момента ее касания поверхности анода. Затем возникают ионизация в месте касания капли или струи поверхности анода, дополнительно к этому происходит ионизация струи в прикатодной области. С ростом напряжения и длительности процесса идет преимущественно увеличение области ионизации в прианодной зоне разряда [21]. После чего разряд увеличивается в объеме. В разный период времени он может принимать форму конуса, сферы или эллипсоида. В момент возникновения искрового разряда на поверхности анода или катода происходит, вырыв материала анода и катода, и ионизация меди, окрашивающая области разряда в зеленый цвет. При падении потенциала разряд изменяет свой цвет на более блеклый (рис.2, и, к).  В итоге происходит разрядка конденсаторов и полная деструкция разряда (рис. 1, б).

 

 

а – момент касания  струи поверхности анода; б увеличение катодной и анодной зоны развития разряда;
в
формирование столба электролитной плазмы; г формирование пузырьковой фазы вследствие
избытка тепла; д
вращение разряда сферической формы; е формирование разряда конической формы;
ж
возникновение периферийного искрового разряда с ионизацией атомов меди анода; з возникновение искрового разряда с ионизацией атомов меди катода и анода; и уменьшение энергии разряда
(переход от малинового цвета к сиреневому); к
уменьшение энергии разряда (переход от малинового цвета к темно-сиреневому)

Рисунок 2 – Результаты раскадровки видео струйного ЭПР при малых ОРЭ (Q = 2-10 л/ч)

 

3.3 Анализ формирования плазмы с использованием полого катода с острым срезом при больших ОРЭ 33-88 л/ч

Анализ формирования ВАХ при остром срезе полого катода показывает, что реализуемый технологический диапазон при этом составляет 20-300 В при достижении рабочих токов до 3,5 А (рис. 3). Однако по виду кривых ВАХ невозможно определить, где заканчивается электрохимический процесс и начинается электролитно-плазменный процесс. Уверенно можно только сказать, где возникает искровой пробой с острого среза полого токоподвода и переход после этого в дуговой разряд. Для малых межэлектродных зазоров (1 мм) не удается поднять напряжение разряда выше 175-180 В, для 3 мм выше 260 В, для 5 мм выше 300 В (рис. 3).

 

 

а) вольтамперная характеристика процесса (материал сталь AISI 304, электролит NH4NO3, к = 30 г/л): 1 – межэлектродный промежуток 1 мм, 2 – межэлектродный промежуток 3 мм, 3 – межэлектродный промежуток 5 мм [24];  б) величина убыли массы образца при изменении напряжения между
токоподводами (сталь 08Х18Н9Т): 1 – h = 4,5 мм, Q = 88 л/ч; 2 – h = 1 мм, Q = 33 л/ч [24]

Рисунок 3 – Характеристики струйных разрядов

 

3.4 Оценка морфологии поверхности при больших ОРЭ 88 л/ч

Оценка морфологии поверхности при ОРЭ равных 88 л/ч показывает, что струя электролита вносит существенное изменение в морфологию поверхности. Характерное изменение морфологии начинается с диапазона напряжений в 40-60 вольт. Оно проявляется в разрушении гребешков шероховатости поверхности и ростом высоты межзеренных границ над поверхностью.  Для напряжения 80 В наблюдается рост площади зерен и удаление гребешков шероховатости. Диапазон напряжений 100-160 В характеризуется ростом высоты межзеренных границ над поверхностью. Наибольшее отличие можно фиксировать для режима 180 вольт. Его можно характеризовать почти полным удалением гребешков шероховатости поверхности и ростом площади зерен металла. Можно уверенно говорить об изменении физико-химического взаимодействия струи с поверхностью. Режим 200 вольт характеризуется отсутствием валиков межзеренных границ над поверхностью, выявлением пластин зерен, частичным выявлением границ зерен и более четкой проработкой гребешков шероховатости поверхности. Это может говорить о преобладании электролитно-плазменного механизма над электрохимическим.

 

h = 4,5 мм, Q = 88 л/ч;
а) U = 20 В;  б) U = 40 В; в) U = 60 В; г) U = 80 В; д) U = 100 В; е) U = 120 В; 
ж) U = 140 В;  з) U = 160 В; иU = 180 В;  к) U = 200 В [24]

Рисунок 4 – Изменение морфологии поверхности нержавеющей стали AISI 304 под влиянием электролитической струи при разных напряжениях

 

3.5 Формирование плазмы в струе электролита с использованием полого катода с радиусным скруглением при средних ОРЭ 8-33 л/ч

 Анализ ВАХ для струи электролита показывает, что в отличии от падающей характеристики ВАХ в электролитической ванне [13] струйная обработка имеет повышающий характер [22]. Это говорит о том, что мощность ЭПР все время растет при повышении напряжения. Скругление радиуса среза полого катода способствует уменьшению напряженности электрического поля между острым срезом трубки полого катода и вершинами шероховатости поверхности анода. Очевидно, что это еще больше позволяет повысить напряжение ЭПР (рис. 5, а).

В процессе диагностики ЭПР для диапазона напряжений 200-300 В фиксируется локальное уменьшение тока разряда. Это может говорить о начале процесса поляризации анода в этом диапазоне напряжений. В диапазоне 20-500 В убыль массы материала анода постоянно растет (за исключением диапазона напряжения поляризации анода 200-400 В), так как увеличивается число частиц, переносящих заряд, что подтверждается графиком убыли массы от параметра тока, имеющей почти такую же зависимость.

Одним из показательных графиков состояния электролитической струи является зависимость температуры от напряжения между токоподводами. В диапазоне напряжений 200-400 В наблюдается уменьшение температуры, что можно объяснить уменьшением тока разряда, что соответствует выделяемой энергии по закону Джоуля-Ленца, Дж:

 

          dQ = I² · R · dt,                                                            (2)

 

 

тогда

 

      Q = t1t2I2Rdt,                                                         (3)

                 

где dQ количество теплоты, выделяемое за время горения разряда, Дж; R сопротивление цепи, Ом; I сила тока электрического разряда, А; dt время горения разряда, с.

 

 

 

 

 

 

 

 

 

 

а вольтамперная характеристика струйного ЭПР; б – убыль массы материала анода от величины напряжения разряда; в – убыль массы материала анода от величины тока разряда; г – рост температуры электролита от напряжения разряда; д – изменение параметра шероховатости Ra от напряжения разряда

Рисунок 5 – Результаты исследований

 

Наиболее важным для доказательств плазменных процессов в струе электролита является график зависимости параметра шероховатости Ra от напряжения. В нашем случае он имеет такой же вид как выглядит вольтамперная характеристика при обработке в ванне [13]. С повышением напряжения до 200 В наблюдается рост параметра шероховатости Ra. Это может говорить о том, что в этом случае идет процесс электрохимического растворения поверхности анода. После чего наблюдается перелом кривой и резкое уменьшение параметра шероховатости Ra. Это может говорить об изменении механизма контактного взаимодействия струи электролита с поверхностью анода и переходу на электролитно-плазменный режим. Это подтверждается оценкой морфологии поверхности. При напряжении ЭПР в 200 В наблюдается изменение рисунка элементов поверхности, характеризующемся более четкой проработкой поверхности с появлением на ней мельчайших деталей. По нашему мнению, в этом случае мы можем наблюдать конкурирующий механизм воздействия струи на поверхность, заключающийся в сильном электрохимическом воздействии, отвечающем за высокую скорость убыли массы материала анода и электролитно-плазменный механизм воздействия на поверхность, обеспечивающий эффект полирования поверхности за счет воздействия единичных разрядов очень малой мощности [25, 27]. В случае воздействия только электрохимического механизма обработки поверхности мы, по нашему мнению, должны были бы наблюдать увеличение уровня параметра шероховатости Ra до определенного уровня с выходом на какую-либо стабильную величину, а возможно даже ухудшение Ra поверхности при увеличении глубины межзерных границ. Однако в нашем случае мы имеем дело с комбинированным механизмом воздействия на поверхность с достаточно большой скоростью съема и со снижением шероховатости поверхности с проработкой структуры. Большая скорость съема указывает на наличие электрохимического механизма, а «мягкое» воздействие ЭПР на поверхность с проработкой мельчайших деталей морфологии, по нашему мнению, отвечает за электролитно-плазменный механизм [19].

 

3.6 Оценка морфологии поверхности при средних ОРЭ 33 л/ч

Изменение морфологии поверхности при ОРЭ 33л/ч наблюдается уже при напряжении 100 В (рис. 6). Происходит дробление гребешков шероховатости и появление мелко проработанной структуры материла анода. С увеличением напряжения все более четко проявляется проработка текстуры и мелких деталей поверхности. Это может говорить об увеличивающемся влиянии электролитно-плазменного механизма в струе электролита.

 

 

а) исходная поверхность анода; б) U = 20 В; в) U = 60 В; г) U = 100 В;
д) U = 200 В; е) U = 300 В; ж) U = 400 В; з) U = 500 В

Рисунок 6 – Изменение морфологии поверхности при воздействии ЭПР
при разном напряжении

 

3.7 Результаты моделирования

Результаты моделирования скоростей и давлений электролита при больших ОРЭ в процессе формирования ЭПР показаны на рис. 7. Для нахождения скорости и давления использовалась программа COMSOL Multiphysics. Уравнение Навье-Стокса, которое в векторном виде для жидкости записывается в виде:

 

dʋdt=-ʋ×ʋ+νʋ-1ρ ×p+f ,                                          (4)

 

где, оператор набла; ∆ векторный оператор Лапласа; t время; ν коэффициент кинематической вязкости электролита; ρ плотность; p давление; ʋ   векторное поле скорости;  
f  векторное поле массовых сил.

Для несжимаемой жидкости, которой является электролит, должно выполняться условие несжимаемости:

 

× ʋ  =0.                                                                    (5)

 

Анализ распределения скоростей потока показывает, что максимальные скорости потока локализованы в трубке электролита и по поверхности анода в окрестности полого катода. При этом максимальное давление локализовано по оси потока и также сформировано в окрестности трубки. Это предполагает, что выделяющаяся при ЭПР энергия при данных условиях не позволяет довести ЭПР до кипения, вследствие охлаждения за счет большой скорости потока и давления, оказываемого на парогазовый слой. В этом случае это может быть положительным фактором, так как давление локализует в очень тонком слое сам разряд.

 

 

а скорость потока электролита; б давления электролита на зону разряда

Рисунок 7 – Гидродинамическая модель распределения скоростей и давления электролита [21, 27]

 

4 Обсуждение и заключение

 

Проведенные результаты исследований показывают, что возникновение ионизации в струе электролита нами наблюдалось в двух случаях: при низком ОРЭ (2-8 л/ч), а также при среднем и большом ОРЭ (33-88 л/ч). Причем, при ОРЭ (2-8 л/ч) происходит визуально различимая ионизация струи электролита, видимая как при дневном свете, так и при отсутствии освещения. Другим случаем формирования ЭПР в струе электролита является наличие относительно больших ОРЭ. Этот процесс характеризуется высокой скоростью потока электролита, низкой температурой и высоким давлением в зоне контакта струи с поверхностью. В этом случае плазменный разряд не является видимым даже при снижении освещенности в помещении для проведения работ. В этом случае возникают вопросы. Во-первых, если нет видимого процесса ионизации, то существует ли ЭПР в струе электролита при увеличении ОРЭ и увеличении давления в зоне ЭПР? Или же мы имеем дело исключительно с электрохимическим процессом электролиза, в котором можно поднять напряжение до 500 В, хотя классическое представление о процессе электролиза соответствует диапазону 5-60 В. Во-вторых, можно ли получить не только увеличение мощности разряда в струе, но обеспечить одновременное увеличение скорости съема и снижение шероховатости поверхности. В-третьих, какие процессы возникают в струе электролита при контакте с поверхностью. В-четвертых, как и каким образом зафиксировать наличие ЭПР в струе электролита, если визуально отсутствует ионизация ЭПР. Ответы на указанный ряд возникающих вопросов были даны нами при проведении и анализе результатов исследований. Увеличение напряжения при струйном разряде ведет к увеличению общей мощности. Если для ЭПО наблюдается падение мощности при повышении напряжения, то в случае со струйным ЭПР фиксируется пропорциональное увеличение мощности. Величина тока разряда характеризует выделяемое тепло в зоне разряда. Соответственно увеличение тока и напряжения ведёт к росту температуры в межэлектродном промежутке и нагреву электролита, пластины анода и трубки полого катода. Рост температуры разряда пропорционален выделяемой мощности. При достижении температуры в диапазоне 34-40 ºС происходит изменение энергетического состояния   частиц электролита и переход их в возбужденное состояние. Изменение температуры электролита изменяет механизмы контактного взаимодействия с поверхностью, что отражается на параметре шероховатости Ra и морфологии. Очевидно, что повышение температуры струи приводит к активной ионизации составляющих электролита. После чего происходит ионизация и переход в возбужденное состояние атомов электролита и изменение характера воздействия на поверхность. Зафиксировано изменение морфологии поверхности и изменение механизма электрохимического воздействия на комбинированный электрохимический - электрофизический механизм. Комбинированный характер ЭПР можно объяснить тем, что при существенном изменении шероховатости поверхности фиксируется значительный удельный съем материала анода, возрастающий при увеличении мощности разряда. Электролитно-плазменный механизм выражается в уменьшении шероховатости поверхности при повышении напряжения и изменении морфологии поверхности от грубого блокового (зеренного) разрушения поверхности к четкой мелко-элементной проработке структуры при контактном взаимодействии комбинированного ЭПР.

Результатом обсуждений являются следующие заключения:

  1. При малом межэлектродном промежутке менее 6 мм и при ОРЭ менее 8 л/ч в межэлектродном зазоре происходит ионизация как в части струи электролита в виде падающей капли, в катодном и анодном пространстве, так и в большей части электролита в струе при диффузном разряде;
  2. Ионизация в виде локальных областей при полом катоде фиксируется в виде мелких рисок на закругленных краях трубки, при наборном катоде между проводниками при их близком расположении друг другу;
  3. При увеличении ОРЭ более 8 л/ч ионизации струи визуально не фиксируется;
  4. При увеличении ОРЭ 8-88 л/ч и повышении температуры свыше 34 ºС и близком межэлектродном промежутке (менее 4 мм) возникает ионизация струи в локальной области на острых краях трубки полого катода с развитием искрового разряда и переходом его в дуговой разряд;
  5. Повышение температуры электролита в области разряда приводит к изменению ионизации столба струи и изменению характера воздействия струи на морфологию поверхности анода.

 

Благодарность

 

Автор выражает благодарность графическому дизайнеру Диане Александровне Поповой за подготовку иллюстраций

Список литературы

1. Петров, В. В. Технологический суверенитет России: концептуальные подходы и прак-тическая реализация // Проблемы развития экономики. - 2020. - Т. 26, № 2. - С. 47-56.

2. Степанова, Т. Д. Технологический суверенитет России как элемент экономической без-опасности / Т. Д. Степанова // Экономика: вчера, сегодня, завтра. – 2022. – Т. 12, № 9-1. – С. 567-577. – DOIhttps://doi.org/10.34670/AR.2022.19.76.044. – EDN JNNZEN.

3. Принципы построения автоматизированных систем поддержки жизненного цикла инно-вационных продуктов / А. И. Надеев, А. И. Попова, А. В. Сурина, Ю. К. Свечников // Датчики и системы. – 2006. – № 11. – С. 59-63. – EDN KWMQTP.

4. Роль университета в интеграции образования, науки и бизнеса / С. И. Головкина, А. И. Попова, С. А. Черногорский, Н. В. Валебникова // Университет как фактор модернизации Рос-сии: история и перспективы (к 55-летию ЧГУ им. И.Н. Ульянова) : Материалы Международной научно-практической конференции , Чебоксары, 18 октября 2022 года. – Чебоксары: Общество с ограниченной ответственностью «Издательский дом «Среда», 2022. – С. 138-140. – EDN NERYTD.

5. Патент № 2640213 C1 Российская Федерация, МПК C25F 3/16, C25F 7/00. Способ струйного электролитно-плазменного полирования металлических изделий сложного профиля и устройство для его реализации: № 2016152796: заявл. 30.12.2016: опубл. 27.12.2017 / Д. А. За-рубин; заявитель Федеральное государственное автономное научное учреждение "Центральный научно-исследовательский и опытно-конструкторский институт робототехники и технической кибернетики" (ЦНИИ РТК). – EDN LNRJCM.

6. Ablyaz, Timur & Muratov, K. & Ushomirskaya, L. & Zarubin, D. & Sidhu, Sarabjeet. (2019). Electrolytic plasma polishing technique for improved surface finish of ED machined compo-nents. Engineering Solid Mechanics. 7. 131-136.https://doi.org/10.5267/j.esm.2019.3.003.

7. Electrolytic plasma polishing technique for improved surface finish of ed machined compo-nents / T. R. Ablyaz, K. R. Muratov, L. A. Ushomirskaya et al.] // Engineering Solid Mechanics. – 2019. – Vol. 7, No. 2. – P. 131-136. – DOIhttps://doi.org/10.5267/j.esm.2019.3.003. – EDN OYFPAV.

8. Electrolytic Plasma Surface Polishing of Complex Components Produced by Selective Laser Melting / T. R. Ablyaz, K. R. Muratov, M. M. Radkevich et al.] // Russian Engineering Research. – 2018. – Vol. 38, No. 6. – P. 491-492. – DOIhttps://doi.org/10.3103/S1068798X18060035. – EDN YCBXKH.

9. Gaisin, A.F., Gaisin, F.M., Zheltukhin, V.S. et al. High-Frequency Discharge with a Jet Elec-trolytic Electrode. Plasma Phys. Rep. 48, 48–54 (2022). https://doi.org/10.1134/S1063780X22010068

10. Петрович, В. С. Струйная электролитно-плазменная обработка сплайновых поверхно-стей / В. С. Петрович, Д. А. Левин, М. В. Новоселов // Наука и инновации в технических универ-ситетах : материалы Тринадцатого Всероссийского форума студентов, аспирантов и молодых ученых, Санкт-Петербург, 23–25 октября 2019 года. – Санкт-Петербург: Федеральное государ-ственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого", 2019. – С. 55-57. – EDN PCKKGY.

11. Kirko, D.L. Study of Near-Electrode Plasma and Electrode Surface During Discharges in Electrolytes. Plasma Phys. Rep. 46, 597–603 (2020). https://doi.org/10.1134/S1063780X20060045

12. Колесин, К. Г. Влияние струйного электролитно-плазменного полирования на точ-ность выполнения размеров / К. Г. Колесин, Е. С. Берестенников, М. В. Новоселов // Неделя науки СПбПУ: Материалы научной конференции с международным участием. В 2-х частях, Санкт-Петербург, 18–23 ноября 2019 года. Том Часть 2. – Санкт-Петербург: Политех-Пресс, 2020. – С. 211-214. – EDN BKUSQX.

13. Куликов, И. С. Электролитно-плазменная обработка материалов. Монография / И. С. Куликов, С. В. Ващенко, А. Я. Каменев. – Минск: Белорусская наука, 2010. – 232 с. – ISBN 978-985-08-1215-5. – EDN RBAYXT.

14. Влияние температуры струйного электролитно-плазменного разряда на шерохова-тость поверхности / К. Л. М. Диату, С. А. Кислицин, А. С. Фумин [и др.] // Электрофизические методы обработки в современной промышленности: VI Международная научно-практическая конференция молодых ученых, аспирантов и студентов, Пермь, 15–16 декабря 2022 года. – Пермь: Пермский национальный исследовательский политехнический университет, 2023. – С. 90-94. – EDN XXLALK.

15. Д.И. Словецкий, С.Д. Терентьев Электрический разряд в электролитах источник неравновесной плазмы при атмосферном давлении. / Д.И. Словецкий, С.Д. Терентьев // Инсти-тут нефтехимического синтеза им. А.В.Топчиева РАН, Москва main.isuct.ru›files/konf/ISTAPC2005/proc/5-23.pdf

16. Влияние компонентов раствора электролита на нижнюю границу начала процесса электролитно-плазменного полирования / М. Т. Коротких, С. В. Захаров, А. А. Волков, И. А. Марцинкевич // Электрофизические методы обработки в современной промышленности : Мате-риалы II Международной научно-практической конференции молодых ученых, аспирантов и студентов, Пермь, 18–20 декабря 2018 года. – Пермь: Пермский национальный исследователь-ский политехнический университет, 2019. – С. 122-128. – EDN ZAYBNZ.

17. Анализ тепловых явлений при струйной фокусированной электролитно-плазменной обработке / А. И. Попов, М. И. Тюхтяев, М. М. Радкевич, В. И. Новиков // Научно-технические ведомости Санкт-Петербургского государственного политехнического университета. – 2016. – № 4(254). – С. 141-150. – EDN XWLPOJ.

18. Электрофизические закономерности струйной электролитно -плазменной обработки / А. И. Попов, А. А. Москалец, С. В. Беляков [и др.] // Воронежский научно-технический Вестник. – 2023. – Т. 1, № 1(43). – С. 4-19. – DOIhttps://doi.org/10.34220/2311-8873-2023-4-19. – EDN GHWUVC.

19. Попов, А. И. Анализ морфологии при воздействии электролитической струи на по-верхность нержавеющих сталей / А. И. Попов // Воронежский научно-технический Вестник. – 2023. – Т. 4, № 4(46). – С. 35-48. – DOIhttps://doi.org/10.34220/2311-8873-2023-35-48. – EDN ICUPCZ.

20. Попов, А. И. Атомно-дислокационная модель удаления поверхностных слоев струй-ным электролитно- плазменным полированием / А. И. Попов // Воронежский научно-технический Вестник. – 2024. – Т. 1, № 1(47). – С. 31-51. – DOIhttps://doi.org/10.34220/2311-8873-2024-31-51. – EDN DWAPMM.

21. Попов, А. И. Гидродинамические особенности струйного элетролитно-плазменного разряда / А. И. Попов // Технология машиностроения. – 2023. – № 6. – С. 5-17. – EDN FWIRAM.

22. Bagautdinova, L.N., Gaisin, F.M. A multichannel discharge in conducting liquid at atmos-pheric pressure. High Temp 48, 126–128 (2010). https://doi.org/10.1134/S0018151X10010153

23. High-frequency characteristics of a jet electrolyte-plasma discharge Alexander I. Popov; Anatoly P. Veselovsky; Sergey V. Ermak; Sergey V. Zakharov; Marina V. Yakovitskaya; Vasily G. Teplukhin; Mikhail M. Radkevich Author & Article Information AIP Conf. Proc. 2969, 020023 (2024) https://doi.org/10.1063/5.0182527

24. Влияние напряжения струйного электролитно-плазменного разряда на морфологию образцов из нержавеющих сталей / А. А. Лисин, К. Л. М. Диату, А. А. Москалец, А. И. Попов // Перспективные машиностроительные технологии : сборник статей Международной научно-практической конференции, посвященной 125-летию Санкт-Петербургского политехнического университета Петра Великого и 5-летию Высшей школы машиностроения, Санкт-Петербург, 13–20 мая 2024 года. – Санкт-Петербург: ПОЛИТЕХ-ПРЕСС, 2024. – С. 351-355. – EDN DXFIKG.

25. Новоселов, М. В. Повышение качества поверхностей сложного профиля методом струйной электролитно-плазменной обработки / М. В. Новоселов // Модели и методы развития технологий машиностроения в условиях цифровизации экономики России: Сборник статей / Под редакцией А.А. Поповича, Д.П. Гасюка. – Санкт-Петербург: ПОЛИТЕХ-ПРЕСС, 2023. – С. 93-97. – EDN KSKVCM.

26. High-Speed Dimensional Processing of Metallic Materials with an Environmentally Friendly Jet Electrolyte-Plasma Method / A. Popov, A. Popova, A. Fumin [et al.] // Mechanisms and Machine Science (book series). – 2022. – Vol. 108 MMS. – P. 481-489. – DOIhttps://doi.org/10.1007/978-3-030-87383-7_52. – EDN SEEEPN.

27. Гидродинамическое моделирование струйного электролитно-плазменного разряда / А. И. Попов, С. А. Кислицын, А. А. Москалец [и др.] // Модели и методы развития технологий машиностроения в условиях цифровизации экономики России: Сборник статей / Под редакцией А.А. Поповича, Д.П. Гасюка. – Санкт-Петербург: ПОЛИТЕХ-ПРЕСС, 2023. – С. 72-76. – EDN UCPQGY.


Войти или Создать
* Забыли пароль?